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Abstract
Model ecosystems with quenched, symmetric interspecies interactions have
been extensively studied using the replica method of the statistical mechanics
of disordered systems. Here, we consider a more general scenario in which
both the species abundances and the interspecies interactions change with
time, albeit in widely separated timescales. The equilibrium of the coupled
dynamics is studied analytically within the partial annealing framework, in
which the number of replicas n takes on positive as well as negative values. In
the case n > 0, which describes ecosystems characterized by the cooperative
interspecies interactions, we find a discontinuous transition to a regime of zero
diversity, whereas in the case where competition prevails, n < 0, we find that
the species diversity is maximum.

PACS numbers: 87.23.Cc, 75.10.Nr

1. Introduction

An interesting though rarely pointed out parallel between the physics of disordered systems
and the organization of ecosystems is the existence of two widely separated timescales for
the evolution of the relevant variables that describe those systems. In physics one has the
annealed variables which reach equilibrium on experimental timescales (e.g., spins), and
the quenched variables that can usually be considered frozen from observational purposes
(e.g., exchange interactions) [1, 2], whereas in biology one has the ecological variables (e.g.,
species abundances) and the evolutionary variables (e.g., characteristics of the species) [3].
The analogy is made stronger by noting that the features that distinguish a species from the
others also determine the strengths (and signs as well) of the interspecies interactions.

Most population dynamics as well as spin-glass models have focused on the
characterization of the properties of the fast variables only, although at least in the biology
context it is obvious that the main drive for changing a species should come from the outcome
of the competition in the ecological domain. A more suitable framework would allow the slow
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variables to vary so as to reach equilibrium together with the fast variables, while keeping the
two timescales apart. (In the annealed approximation of statistical physics, both spins and
interactions are viewed as fast variables evolving on the same timescale.) A mathematical
framework to treat this intermediate situation—termed as partial annealing—based on the
standard statistical mechanics tools was put forward independently by Coolen et al [4, 5]
and Dotsenko et al [6]. Those contributions unveiled a new physical interpretation for the
number of replicas n: it is proportional to the ratio β̃/β between the inverse temperatures
characterizing the Boltzmann distributions of the slow and fast variables.

In this paper, we use the partial annealing framework to study the effect of the slow
relaxation of the interspecies interactions on the equilibrium properties of a well-known
ecosystem model—the random replicator model [7]. Following the population dynamics
tradition, this model and its variants have been extensively studied within the equilibrium
statistical mechanics framework in the case of the quenched interactions [8–11]. In the partial
annealing approach, the quenched limit is recovered by setting β̃ = 0 and hence n = 0 [4–6].
Since the random replicator model is defined for the deterministic regime β → ∞ only, in
this contribution we focus on the limit n ∼ β−1 → 0 such that the product nβ is finite and
proportional to β̃.

We find that the slow change of the interspecies interactions, which is primarily driven by
the strength of the correlations between species, may alter radically the equilibrium properties
of the ecosystem as compared with the static, quenched case. This happens in the case where
alliances of pairs of abundant species are favoured by the coupled dynamics of the interspecies
interactions and species abundances, leading to the onset of a discontinuous transition between
a regime of high species diversity and a regime of zero diversity. In addition, we find that the
replica-symmetric approach fails dramatically to describe the situation where the intensity of
the competition increases as a species becomes more abundant, which corresponds to negative
values of the replica number. In this case, species alliances cannot be formed, then resulting
in richer ecosystems.

2. Random replicator model

The abundance of individuals of species i = 1, . . . , N in the ecosystem is described by the
real-valued quantity xi ∈ [0,∞) and the form the encounter between the ith and j th species
affects the growth of species i is given by the interspecies interaction strength Jij . In the
ecological timescale, the interactions are held fixed and the species concentrations change
following the replicator equation [12, 13]

dxi

dt
= xi(Fi − φ), (1)

where Fi = −∑
j Jij xj can be identified with the fitness of species i and φ is a Lagrange

multiplier that enforces the constraint

N∑
i=1

xi = N (2)

for all t. Species j will tend to decrease the abundance of species i if Jij > 0, whereas it will
promote the growth of species i if Jij < 0.
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In the case of symmetric interactions Jij = Jji , the asymptotic regime of equation (1)
can be fully described by examining the maxima of a fitness functional F or, equivalently, the
minima of the Hamiltonian H defined by [7]

F({Jij }, {xi}) = −H({Jij }, {xi}) = −1

2

∑
i,j

Jij xixj (3)

and so it can be shown that the only stationary states are fixed points (see, e.g., [13]). In
this case, the Lagrange multiplier in equation (1) is the mean fitness of the ecosystem, i.e.,
φ = 1

N

∑
i xiFi . Because of this symmetry assumption, we can sort out the pairs of species

into two categories: competing species for which Jij > 0 and cooperating species for which
Jij < 0.

Assuming that the symmetric interspecies interactions are statistically independent
random variables, we can easily obtain the equilibrium properties of the ecosystem model
within the statistical mechanics approach [7]. The basic idea is to introduce the partition
function

Z({Jij }) =
∫ ∞

0

∏
i

dxiδ

(
N −

∑
i

xi

)
exp[−βH({Jij }, {xi})] (4)

and then focus on the zero-temperature limit β = 1/T → ∞ to ensure that only the states
that minimize H will contribute to Z.

3. Partial annealing formalism

As pointed out before, the ecosystem model described by equations (1)–(3), termed the
random replicator model, has been extensively studied in the case the interspecies interactions
are quenched (fixed) variables. Here, we study analytically a more realistic situation in
which the interactions Jij evolve on a much slower timescale, the evolutionary timescale, than
the characteristic timescale associated with the change of the species concentrations xi , the
ecological timescale. Following Coolen et al [4], we assume that the species concentrations
are effectively in equilibrium on the timescale of the interactions dynamics. This equilibrium
is characterized by the Boltzmann distribution

P({Jij }, {xi}) = 1

Z
δ

(
N −

∑
i

xi

)
exp[−βH({Jij }, {xi})] (5)

with Z given by equation (4).
The partial annealing approach is based on the assumption that the interspecies interactions

Jij evolve according to the equation

τ
d

dt
Jij = ε

N
〈xixj 〉J − µJij +

1√
N

ηij (t), i < j, (6)

where ε = ±1 and the notation 〈· · ·〉J stands for the thermal average taken with the distribution
(5). Here, ηij is a Gaussian noise of zero mean and covariance

ηij (t)ηkl(t ′) = 2τ β̃−1δ(i,j),(kl)δ(t − t ′) (7)

which introduces the characteristic inverse temperature of the interaction system, β̃. In the first
term on the right-hand side of equation (6), the choice ε = −1 corresponds to a Hebbian-like
reinforcement process [14]: the larger the correlation 〈xixj 〉J between the species i and j , the
more negative the Jij becomes, promoting thus the mutual growth of both species. The case
ε = +1 is more interesting since it corresponds to a situation where competition prevails—any
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two abundant species will become fiercer competitors and so try to deplete the concentration
of each other. Finally, the term −µJij in equation (6) prevents the unbounded growth of the
magnitudes of the interactions and the quantity τ ensures that this equation is dimensionally
homogeneous.

The coupling between the species concentrations and the interspecies interactions is due
solely to the term 〈xixj 〉J � 0 which can be eliminated from equation (6) using the identity

〈xixj 〉J = − 1

β

∂

∂Jij

ln Z({Jij }) (8)

so that the coupling dynamics can be written in the form of a Langevin equation,

Nτ
d

dt
Jij = − ∂

∂Jij

H̃({Jij }) +
√

Nηij , i < j, (9)

where we have defined the effective Hamiltonian

H̃({Jij }) = ε

β
ln Z({Jij }) +

Nµ

2

∑
k<l

J 2
kl . (10)

Hence, the equilibrium distribution of the interaction system is also a Boltzmann distribution,
P̃({Jij }) = exp[−β̃H̃({Jij })]/Z̃, where

Z̃ =
∫ ∞

−∞

∏
i<j

dJij exp[−β̃H̃({Jij })]. (11)

The delicacy of the partial annealing formulation can be appreciated when equation (10) is
inserted into the above expression for the partition function of the interaction system, yielding

Z̃ =
∫ ∞

−∞

∏
i<j

dJij [Z({Jij })]n exp

⎛
⎝−1

2
β̃Nµ

∑
i<j

J 2
ij

⎞
⎠

=
(

2π

β̃Nµ

)N(N−1)/4

〈[Z({Jij })]n〉, (12)

where n = −εβ̃/β and the notation 〈· · ·〉 stands for the average over the random independent
Gaussian variables Jij of zero mean and variance 1/β̃Nµ. Aside from a trivial additive factor
of the order of N2 ln N , which gives the dominant contribution to the global free energy F̃

defined by

−β̃F̃ = ln Z̃, (13)

the evaluation of the terms of order N in the free energy can easily be carried out by resorting
to the very same tricks used in the case of quenched disorder [1, 2]. In that case, however,
n has no apparent physical meaning—it is an auxiliary parameter that appears in the identity
〈ln y〉 = limn→0

1
n

ln〈yn〉.
To obtain the standard results of the quenched limit for the Gaussian-distributed

interactions [7], it is not enough to set β̃ = 0, thus implying that the interactions dynamics,
equation (6), is governed by the noise term ηij . The reason is that the variance of the interactions
distribution depends on β̃ (see equation (12)) and so it would vanish in the required limit.
The partial annealing formulation of Dotsenko et al [6] circumvents this difficulty by setting
µ = 1/β̃. In this paper, we follow this prescription so that the dependence of Z̃ on β̃ occurs
through n only. Since the relevant limit for the replicator dynamics is β → ∞, n must tend
to 0 such that the product βn = −εβ̃ is finite. To facilitate the presentation of the results, we
introduce an effective inverse temperature β ′ = −εβ̃ which can take on positive as well as
negative values.
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Finally, to prevent the unbounded growth of any single species—a possibility in the limit
N → ∞—we introduce a quadratic damping term that accounts for the self-limitation in the
growth of each species. This is achieved by setting Jii = u > 0 for all i. Henceforth, u will
be referred to as the intraspecies competition parameter.

4. Replica approach

The trick to carry out the average over the interactions in equation (12) is to evaluate [Z({Jij })]n
for integer n first, then calculate the integrals over Jij explicitly and finally make the naive
analytical continuation to the real negative or positive n (see [15] for the justification of this
procedure). The evaluation of the terms of order N in equation (13) is standard by now, so we
present the final result only,

−β̃F̃ /N =
∑

a

Qa(β
2Q̂a + β2Qa/4 − βu/2) − β2

∑
a<b

qab(q̂ab − qab/2)

+ β
∑

a

R̂a + ln G(R̂a, Q̂a, q̂ab), (14)

where

G =
∫ ∞

0

∏
a

dxa exp

[
−β

∑
a

R̂axa − β2
∑

a

Q̂ax
2
a + β2

∑
a<b

q̂abxaxb

]
. (15)

At this stage, the replica indices a and b run from the integers 1 to n, and the saddle-point
parameters Qa, Q̂a, qab, q̂ab and R̂a are chosen so as to minimize the total free energy F̃ . The
relevant physical order parameters are

qab = 1

N

∑
i

〈〈xiaxib〉T 〉, a < b (16)

and

Qa = 1

N

∑
i

〈〈
x2

ia

〉
T

〉
, (17)

which measure the overlap between a pair of stationary states labelled by the replica indices
a and b, and the overlap between the stationary state labelled by a with itself, respectively.
Here, 〈· · ·〉T stands for a thermal average taken with the Boltzmann distribution P̃({Jij }). The
other parameters, R̂a, Q̂a and q̂ab, enter the calculation as Lagrange multipliers. To proceed
further and carry out the analytical continuation to real n, we must make some simplifying
assumption about the structure of the saddle-point parameters.

4.1. Replica-symmetric solution

The simplest conjecture is that the saddle-point parameters are symmetric under permutations
of the replica indices, i.e., qab = q, q̂ab = q̂,Qa = Q, Q̂a = Q̂ and R̂a = R̂. This
prescription allows the explicit evaluation of the integrals in equation (15) resulting in the
following replica-symmetric free energy density, f̃ = F̃ /N ,

−β̃f̃ /n = Q(β2Q̂ + β2Q/4 − βu/2) − 1

2
(n − 1)β2q(q̂ − q/2) + βR̂

− 1

2
ln(Q̂ + q̂/2) +

1

n
ln

∫ ∞

−∞
Dz

[
exp

(
	2

z

)
erfc (	z)

]n
, (18)
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where

	z = R̂ − q̂1/2z

2(Q̂ + q̂/2)1/2
, (19)

Dz = dz

(2π)1/2
exp(−z2/2), (20)

and we have neglected trivial additive terms. Note that at this stage n can be considered a real
variable. The saddle-point parameters q,Q, R̂, q̂, Q̂ are obtained by solving the five coupled
nonlinear equations that result from extremizing the free energy with respect to each of them.
Since our aim is to single out the states that maximize the fitness functional (3) for a fixed
set of interactions, we must consider the zero-temperature limit β → ∞ of the saddle-point
equations taking care to take the dependence of n on β, n = −εβ̃/β = β ′/β, into account.
The limit is taken such that limβ→∞ 2β(Q̂ + q̂/2) = u − v, where v = limβ→∞ β(Q − q) is
finite. As a result, 	z ∝ β1/2 → ±∞, so the complementary error function can be replaced
by its asymptotic form. After some algebra, we can reduce the set of saddle-point equations
to the following three coupled equations:

(u − v) = Q1/2 φ1∫ 


−∞ Dz + φ0

, (21)

(u − v)2 = φ2∫ 


−∞ Dz + φ0

, (22)


 = Q1/2(2v − u + β ′Q), (23)

where

φm =
∫ ∞




Dz exp
[α

2
(z − 
)2

]
(z − 
)m, (24)

with α = β ′Q/(u − v). These saddle-point equations must be solved for the physical
parameters Q and v, as well as for the auxiliary parameter 
 = R̂/q̂1/2. In the replica-
symmetric framework, definitions (16) and (17) become

q = 1

N

∑
i

〈〈xi〉2
T

〉
, (25)

Q = 1

N

∑
i

〈〈
x2

i

〉
T

〉
, (26)

where the thermal average is now calculated using the replica-symmetry prescription. Hence,
v ∝ Q− q > 0 can be interpreted as a susceptibility that measures the fluctuations around the
average species concentration, whereas Q is proportional to the probability that two randomly
selected individuals belong to the same species, a measure known as Simpson index in the
ecology literature [16]. Henceforth, we will refer to Q as the Simpson index, though, strictly,
the correct definition of that index is Q/N . Clearly, Q gives an indication of the distribution of
species in the ecosystem: large Q means that a few species dominate the ecosystem whereas
Q close to 1 means that most of the N species are present in the ecosystem in approximately
equal concentrations. It is interesting to note that the Simpson index is related to the Rényi
entropy [17]

Sγ = 1

1 − γ
ln

[
N∑
i

(xi/N)γ

]
(27)
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Figure 1. Simpson index Q as a function of the intraspecies competition parameter u for (solid
curves from left to right) β ′ = 0, 0.1, 0.25, 0.5, 1, 2 and 3. The upper dashed curve corresponds to
the condition α = 1. The lower dashed curve marks the values of u beyond which the saddle-point
equations have two solutions. The large Q solution (upper branch) is unstable to fluctuations within
the replica-symmetric space.

for γ = 2. We recall that the Rényi entropy reduces to the Shannon entropy in the limit
γ → 1.

The free energy in this limit becomes

−εf̃ = Q

(
u − 3

2
v +

β ′

4
Q

)
+

1

β ′ ln

(∫ 


−∞
Dz + φ0

)
. (28)

The results for the quenched case can be easily recovered by setting β ′ = 0 (and hence α = 0)
in the saddle-point equations, equations (21)–(23), and in the free energy, equation (28).

4.2. Stability of the replica-symmetric solution

In using the replica-symmetry prescription to evaluate the saddle-point parameters, it is
important to check that the solution is in fact locally stable. An instability of the replica-
symmetric solution is determined by a sign change in (at least) one of the eigenvalues of
the matrix of quadratic fluctuations around the replica-symmetric solution. Following the
standard stability analysis [18], we find that the stability against perturbations that break the
replica symmetry is given by the de Almeida–Thouless condition

1

(u − v)2

φ0∫ 


−∞ Dz + φ0

< 1. (29)

4.3. Analysis of the results

The set of saddle-point equations can be easily solved numerically by changing the status of
the variables u and 
 so that the latter is viewed as a known, given parameter and the former
as an unknown. Varying 
 from −∞ to ∞ allows us to sweep the entire range of physical
values of u. In what follows, we will focus on the dependence of the Simpson index Q on β ′

and u.
The results for β ′ > 0 are summarized in figure 1. Since φm diverges for α > 1, the

saddle-point equations become invalid in this regime and so the extreme of the free energy is
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0 1 2 3 4 5

Q

u

Figure 2. Simpson index Q as a function of the intraspecies competition parameter u for (solid
curves from left to right) β ′ = 0,−0.1,−0.25,−0.5,−1,−2 and −3. The symbols × indicate
the instability of the replica-symmetric solution.

obtained for Q → ∞. For α = 1, the saddle-point equations have a finite solution, represented
by the upper dashed curve in figure 1. Because of this divergence, the saddle-point equations
can have zero, one or two solutions for fixed u. Actually, only the lower branch solution
(small Q) is stable against fluctuations within the replica-symmetric space, so the transition
from finite Q to Q → ∞ takes place at the lowest value of u for which the saddle-point
equations have solution. This corresponds to the lower dashed curve in figure 1. For β ′ < 0.1
these two curves coincide. In addition, we find that condition (29) is always satisfied by the
replica-symmetric solutions (upper and lower branches), so these solutions are stable against
fluctuations that take them outside the replica-symmetric space. This is in agreement with
the findings for the spherical spin-glass model, for which the replica-symmetric solution was
proved to be stable for positive n [19].

In figure 2 we sum up the results for β ′ < 0. Since α � 0, there is no risk of divergence
in the evaluation of φm and so the saddle-point equations have either zero or two solutions for
fixed u. In this case, however, the upper branch solution is always unstable to fluctuations that
break the replica symmetry, as indicated in the figure. In particular, we find that the instability
sets in at u = √

2 for β ′ = 0 and at u = 2 for β ′ → −∞. The results are qualitatively similar
to those for β ′ > 0 as in both cases there is no solution to the saddle-point equations (thus
implying Q → ∞) for small u. This is in stark contrast with the quenched case for which Q
diverges at u = 0 only. The phase diagram depicted in figure 3 summarizes the main results.
Note that for β ′ < 0 the lower branch solution (small Q solution) becomes unstable before
the onset of the discontinuous transition to a regime characterized by Q → ∞. We will argue
in section 8, however, that for β ′ < 0 this transition is an artefact of the replica-symmetric
solution: the correct solution should correspond to a finite Q value which is upper-bounded
by the quenched solution. Finally, we note that for β ′ = 0 the saddle-point equations have a
single solution in the entire range of u.

5. Distribution of the species abundances

The measure of the relative abundance of each species is a classic form to investigate the
structure of the ecosystem. For instance, studies based on samples of insects [20] and plants
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Figure 3. Phase diagram in the plane (β ′, u). The dashed curve for β ′ � 0 is the de Almeida–
Thouless line—the replica-symmetric (RS) solution is stable above this line. The solid curves
signal the limit of the existence of a solution with the finite saddle-point parameters. The RS
solution is stable for β ′ > 0.

[21] led to the conclusion that their abundances are distributed geometrically, i.e., most
species are relatively rare, whereas a few species are fairly common. In general, however,
the log-normal distribution, that describes the situation in which the most numerous category
contained species of intermediate abundance, seems more adequate to fit survey data, especially
in thoroughly censused communities [22].

To calculate the cumulative distribution that the concentration of a given species takes on a
value smaller than x, denoted by C(x), we must assume first that all species concentrations are
identically distributed, so we can add an extensive term h

∑
i (x−xi) to the Hamiltonian (3).

The desired cumulative distribution can be obtained by taking the derivative of the resulting
free energy with respect to h and then setting h = 0. The final result is

C(x) = 1 −
∫ ∞

+x(u−v)/Q1/2 Dz exp

[
α
2 (z − 
)2

]
∫ 


−∞ Dz + φ0

, (30)

from where we can obtain the fraction of surviving species in the ecosystem at equilibrium,
i.e., the diversity d = 1 − C(0),

d = φ0∫ 


−∞ Dz + φ0

. (31)

Note that C(0) > 0 implies that the probability density that the abundance of a certain species
is x exhibits a delta peak at x = 0, i.e., P(x) = δ(x)C(0) + dC(x)/dx.

In figure 4, we present the dependence of the diversity on the control parameters of the
model. Of course, all threshold and instability phenomena that affect the Simpson index Q
influence the diversity d as well, as illustrated in the figure. In particular, d = 0 in the regime
where the extremum of the free energy is obtained for Q → ∞. As expected, the large
values of the intraspecies competition parameter lead to a maximum of the diversity. A typical
distribution of abundances of the surviving species is presented in figure 5, from where we can
see that the species of intermediate abundance are the most numerous, in agreement with the
field observations [22]. In addition, low abundance species are favoured in the case of β ′ > 0
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Figure 4. Fraction of surviving species in the ecosystem for the values of β ′ indicated in the figure.
The symbol × signals the limit of validity of the solutions.
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Figure 5. Finite part of the distribution of abundance for u = 3 (top to bottom at x = 1),
β ′ = −6,−4,−2, 0, 1 and 1.2.

and strongly penalized for β ′ < 0. We leave the appraisal of the consequences of these results
to section 8.

6. Distribution of the interspecies interactions

Since the interactions Jij are dynamic variables, it would be desirable to characterize their
equilibrium statistical properties as well. The integration over the interactions already in the
first stage of the calculation of the free energy precludes the manifestation of the saddle-
point parameters that could inform us about the organization of the space of interactions at
equilibrium. In this section, we focus on the first moments of the probability distribution
of a single interaction coupling, say Jkl . This distribution is defined by integrating the
Boltzmann distribution, P̃({Jij }), over all Jij except Jkl . Of course, since the species are
equivalent, all couplings are identically distributed and so we can consider the quantities
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Mm = 1
N

〈∑
i<j Jm

ij

〉
with m = 1, 2, . . . instead, which are much easier to calculate. For

example, we can easily derive from equation (6) that M1 = −β ′ (1 − Q/N) /2. In addition,
taking the derivative of ln Z̃ with respect to µ (see equation (12)) and setting µ = 1/β̃ yields
M2 = 1

2 + 1
2N

[β ′(2vQ + β ′Q2)− 1]. These results imply that 〈Jkl〉 ≈ −β ′/N and
〈
J 2

kl

〉 ≈ 1/N

for large N.
Aside from the calculation of M1, equation (6) does not yield to an analytical approach

because 〈xixj 〉J depends on the entire set of couplings {Jij }. Estimate of M3 using simulations
(see the next section) yields

〈
J 3

kl

〉 ≈ −3β ′/N2 indicating thus that the third cumulant will
vanish as 1/N3 in the thermodynamic limit. This finding prompts the conjecture that Jkl

follows a Gaussian distribution for large N. (We recall that for β ′ = 0 the distribution of
Jkl is a Gaussian of zero mean and variance 1/N .) Of course, what really matters to the
equilibrium properties of the ecosystem for β ′ �= 0 are the nontrivial correlations between
different interactions produced by the deterministic term 〈xixj 〉J in equation (6). This is the
reason that the properties of the ecosystem for β ′ �= 0 differ so markedly from those of the
quenched case.

7. Simulations

Ecosystem models are usually defined by the equations that govern the dynamics of their
constituent species, so it is important to confirm that the equilibrium analysis carried out
in the previous sections yields in fact the stationary states of the rather complex coupled
dynamics of interactions and species abundances. A purely dynamic approach, that conforms
with our work assumption that the concentrations of the species {xi} evolve much faster
than the interspecies interactions {Jij }, consists in solving the replicator dynamics (1) for
fixed interactions, calculating the products xixj for all pairs i < j , and then updating the
interactions according to equation (6).

As the focus of this paper is on the limit β → ∞, we find it more efficient to search for
the minima of H in equation (3) directly, instead of solving the differential equations (1). This
search is performed as follows. Starting from the uniform situation xi = 1∀i, we pick a pair
of species at random, say i and k, and set x ′

i = xi + ζ and x ′
k = xk − ζ with ζ = 0.01. If this

change results in the decrease of H then the modification becomes effective (i.e., x ′
i and x ′

k

replace xi and xk), otherwise it is discarded and a new pair of species is chosen. In the case
that x ′

k < 0, we reset x ′
k = 0 and x ′

i = xi +xk . In addition, if any of the species concentrations,
xi or xk , happen to be zero we pick out another pair, thus guaranteeing that there is no recovery
from extinction. This procedure is repeated until no further decrease of H is possible. For
this minimum energy configuration, the products xixj ,∀i < j , are computed and then used
to evolve the interspecies interactions with the Euler method with time step 
t = τδ. The
initial condition for the interactions is Jij = 0,∀i < j . We can set τ = 1 without loss of
generality but the value of δ (here we set δ = 0.01) influences the Gaussian noise term in (6),
such that var(η) ∼ δ−1 [5]. The entire process (minimization of H and a single time update in
Jij∀i < j ) is repeated 104 times to allow for thermal equilibration of the interactions. After
this initial transient period, we follow the system evolution for about 104 additional iterations
and record the quantities of interest—the Simpson index and the moments of the distribution
of Jij .

In figure 6, we show that even for small system sizes (N = 80) the agreement between
the analytical predictions for the Simpson index and the simulation results is excellent in the
parameter region where the replica-symmetric saddle point is stable, which comprehends the
entire range of u for β ′ > 0. The numerical estimate of the moments of the distribution
of the interactions is somewhat more delicate because in the expression for the rescaled
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Figure 6. Comparison between the replica-symmetric estimate for the Simpson index Q (solid
curves) and the simulations of an ecosystem with N = 80 species (◦) for β ′ = −1 (left curve) and
β ′ = 1 (right curve). The error bars are smaller than the symbol sizes. The symbol × indicates
the location of de Almeida–Thouless instability point for β ′ = −1.
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Figure 7. Comparison between the rescaled second moment of Jij as predicted by the replica-
symmetric calculation (solid curves) and the simulations with N = 20 species (◦) for β ′ = −1
(lower curve) and β ′ = 1 (upper curve). For N → ∞, M2 → 1/2 regardless of the values of
u and β ′.

moments Mm (see section 6) only the terms on the order of 1/N exhibit a nontrivial dependence
on the control parameters of the model. To enhance the finite N effects, in figure 7 we present
the results for an ecosystem comprising N = 20 species only. The agreement between
theory and simulations is reassuring in the sense it shows that the statistical mechanics
analysis can provide valuable insights into the statistical properties of small systems as
well.

As mentioned before, to obtain the dependence of M3 on the control parameters β ′ and u,
as well as on the system size N, we have to recourse to simulations. Fortunately, to the leading
order in N the simulation results summarized in figure 8 are uncontroversial. In contrast to M1

and M2 which tend to nonzero asymptotic values in the thermodynamic limit, M3 decreases
as 1/N keeping the product NM3 = −3β ′/2 independent of u.
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Figure 8. Simulation results of the rescaled third moment of Jij for different ecosystem sizes,
N = 20 (◦), N = 40 (�), N = 80(×) and (top to bottom) β ′ = −1,−0.5, 0.5 and 1. The error
bars are smaller than the symbol sizes. The horizontal dashed lines are the fittings NM3 = −3β ′/2.

8. Discussion

The most noticeable result of the previous analysis is the harmful effect of β ′ > 0 (or ε = −1)
on the diversity of the ecosystem (see figures 1 and 4). A finite value of the Simpson index
Q is obtained only for relatively large values of the intraspecies competition parameter u,
which prevents the unlimited growth of the species. The reason for that can be apprehended
by inspection of equation (6): a pair of species, say i and j , of high abundances (i.e.,
〈xixj 〉J � 1) induces negative interaction strengths Jij between them, which in turn promotes
further growth of their abundances. This is a positive feedback loop which results in the
explosive growth of species i and j and, consequently, in the extinction of the other species
due to constraint (2). In fact, we find in the simulations that Q ≈ N/2 for small u indicating
the presence of a single pair of species in the ecosystem. In addition, figure 5 corroborates
this scenario by showing that there is a significant increase in the probability of finding low
and high abundance species in the ecosystem, as compared with the case β ′ � 0.

The interpretation of the results for β ′ < 0 (or ε = 1) is more delicate because the
replica-symmetric solution is unreliable in the range of u where the stability condition (29)
is violated. In this case, there is a mechanism of negative feedback that should restrain the
species abundances from uncontrolled growth. In fact, this mechanism is effective in the
region where the replica-symmetric solution is stable, as reflected by the high values of
the diversity measure and the low values of the Simpson index as compared with those for the
quenched case (see figures 2 and 4). The distribution of species abundances shown in figure 5
confirms this restrictive effect as both high and low abundance species are very unlikely to be
found in the ecosystem. Hence, in contrast with the case β ′ > 0, there is no apparent physical
mechanism to explain a sudden reduction of the diversity as predicted by the replica-symmetric
solution. In contrast, the above reasoning indicates that the ecosystem diversity should be
higher than the diversity in the quenched case. To clarify this issue, in figure 9 we present a
comparison between the simulation estimates of the Simpson index for β ′ = 0 and β ′ = −1.
As expected, for fixed N and u the results for β ′ = 0 are upper bounds to those for β ′ = −1.

The spectacular failure of the replica-symmetric approach to predict the equilibrium
properties of the ecosystem for small u in the case β ′ < 0 may be explained by a discontinuous
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Figure 9. Effect of the finite ecosystem size on the Simpson index for β ′ = −1 (N = 20 (◦),
N = 40 (�), N = 80(×)) and β ′ = 0 (N = 20 (•), N = 40 (�), N = 80 (+)). The error bars are
smaller than the symbol sizes. The solid and dashed curves are the replica-symmetric predictions
for β ′ = 0 and β ′ = −1, respectively.

phase transition between the replica symmetry and replica-symmetry broken regimes. This
interesting possibility will be investigated in a future contribution.

9. Conclusion

Unlike most population dynamics models in which the interspecies interactions are fixed
a priori, the ecosystem model studied in this contribution addresses a more general situation
in which both species concentrations xi and interactions Jij change with time, albeit in
widely separated timescales. The equilibrium of the coupled dynamics of concentrations and
interactions can be described by the partial annealing formalism of the statistical physics of
disordered systems [4–6], provided two conditions are satisfied. First, the interactions must be
symmetric Jij = Jji so that for fixed interactions the equilibrium of the species concentrations
is described by the Boltzmann distribution (5). This allows the classification of pairs of species
in cooperative (Jij < 0) and competitive (Jij > 0) pairs. Second, the species concentrations
at equilibrium must affect the interactions rate d Jij /dt only through their pairwise
correlations ε〈xixj 〉J (see equation (6)), so that one can define an effective Hamiltonian
for the interactions.

The equilibrium properties of the ecosystem depend mainly on the sign of ε. On the one
hand, the choice ε = −1 favours the appearance of alliances between pairs of highly abundant
species: unless the intraspecies competition is sufficiently high, the positive reinforcement
mechanism will eventually lead to the complete dominance of a single pair of species. This
is reflected by the appearance of a discontinuous transition between a regime characterized
by a finite value of the Simpson index Q and a regime where Q → ∞ with the consequent
vanishing of the ecosystem diversity. The spontaneous formation of defensive alliances
between subgroups of species has also been reported in more realistic ecological models in
which the interspecies interactions are determined by cyclic food webs (see, e.g., [23, 24]).

The choice ε = +1, on the other hand, models the case where the strength of the
competition that a species experiences from all other species in the ecosystem is proportional
to its abundance, so it pays to keep a low profile. For low levels of the intraspecies competition,
the replica-symmetric approach fails to describe the equilibrium for ε = 1, which corresponds
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to the negative replica numbers, and so our conclusions are based on extensive simulations of
the coupled dynamics.

Since 〈Jij 〉 ≈ β ′/N = εβ̃/N , ultimately it is the sign of ε that determines whether any
two species will cooperate or compete with each other. Hence, by fixing ε (or β ′) we are left
with an ecosystem model where the interspecies interactions are predominantly competitive
(β ′ < 0) or cooperative (β ′ > 0), whereas a more realistic situation would be characterized
by a balance between these two types of interactions. Such a situation could be studied by
considering ε as a random variable, which amounts to considering the replica number n as a
quenched random variable as well.

As in the context of attractor neural networks (see, e.g., [14]), the assumption that
the interspecies couplings (or synaptic weights in that context) Jij are symmetric is utterly
unrealistic from the biological viewpoint but, on the other hand, it allows a full equilibrium
statistical mechanics analysis of the system model. Relaxation of this assumption, allowing
thus the investigation of asymmetric couplings as well, is possible through the use of generating
functional techniques. The results obtained for the asymmetric interactions, however, are
qualitatively similar to those for the symmetric case [10].

The main finding of the study of the model ecosystem defined by equations (1) and (6) is
that ecosystems characterized by predominantly cooperative interspecies interactions (β ′ > 0)

exhibit very low diversity, as opposed to those for which the competition prevails. Then it
follows the somewhat peculiar conclusion that the interspecies competition promotes species
diversity.
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